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Abstract

We discuss the concept of the wavelet variance as
a generalized formalism for representing variations in a
time series on a scale by scale basis. In particular, we
note that the wavelet variance corresponding to some
of the recently discovered wavelets can provide a more
accurate conversion between the time and frequency do-
mains than can be accomplished using the Allan vari-
ance. This increase in accuracy is due to the fact that
these wavelet variances give better protection against
leakage than does the Allan variance.

I. Introduction and Summary

The analysis of a time-ordered set of phase mea-
surements {z;} often falls into one of three categories.
The first approach treats the time series as a function to
be expressed in terms of a set of basis functions defined
globally over a finite interval (one example of such ba-
sis functions are orthogonal polynomials). The purpose
here is to summarize the phase measurements with a
few coefficients in order to quantify underlying physical
effects such as drift.

The second approach takes first or second-order dif-
ferences of the time series in order to transform nonsta-
tionary variations (due to low frequency components)
into stationary variations. The mean square of the sec-
ond difference of phase measurements at various sam-
pling intervals 7 quantifies the incremental variability of
the phase and for many clocks is stationary. This is the
Allan (or pair) variance as a function of 7.
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The third approach is the windowed discrete Fourier
transform (DFT) which is used to determine the spectral
features underlying the time series. A common quantity
derived from this transform is the power spectral density.

The problems with the first approach (polynomial
fits) are that the coefficients are sensitive to time shifts
over the finite interval; many coefficients may be needed
to adequately represent the phase measurements; and,
because the coefficients are calculated with respect to
global basis functions, local features in the phase mea-
surements can be misrepresented. Potential problems
with the second approach include sensitivity to deter-
ministic drifts and leakage due to the fact that the trans-
fer function for the finite impulse response (FIR) filter
associated with the Allan variance has substantial side-
lobes (this leakage is quite similar to that occurring in
the unwindowed DFT). The problems with the third ap-
proach (the windowed DFT) are that the results can
depend on the choice of the particular window and that,
because the windowed DFT is inherently narrowband,
it is necessarily also highly variable and hence — with-
out further processing — does not summarize the salient
features of broadband processes.

Wavelet analysis attempts to address the potential
problems with polynomial fits, the Allan variance and
spectral analysis in one unified approach. First, wavelet
analysis is based upon the discrete wavelet transform,
which provides a “time and scale” representation of time-
ordered observations. The time series is still treated as a
function on a finite interval, but the wavelet basis func-
tions are hierarchical rather than global so that, in con-
trast to polynomial fits, localized features (such as a step
or discontinuity in phase) can be easily represented. Sec-
ond, the wavelet transform can be implemented using a
variety of basis functions and is narrowband at low fre-



quencies and broadband at high frequencies (“multires-
olutional,” as it is referred to in the wavelet literature).
The analyzing function used in the Allan variance when
it is computed using fractional frequency deviates is iden-
tical to the Haar wavelet, a common starting point in
discussions on wavelets. The variances corresponding to
wavelets beyond the Haar wavelet are natural extensions
to the Allan variance. These wavelet variances have po-
tential advantages over the Allan variance in terms of
leakage and insensitivity to deterministic drifts: because
the transfer functions for the FIR filters associated with
wavelets beyond the Haar wavelet have substantially re-
duced sidelobes, these wavelet variances have substan-
tially less leakage; and because the FIR filters for higher
order wavelets are based in part on differencing opera-
tions, a wavelet variance of order n will be invariant to a
polynomial drift of order n. Finally, plots of the square
root of the wavelet variance versus averaging time (or
scale) yield curves that are analogous to the usual “o /7"
curve for the Allan variance. Users familiar with the Al-
lan variance can thus readily interpret the wavelet vari-
ance. In particular, as is true for the Allan variance, the
wavelet variance can be regarded as an octave-band esti-
mate of the spectrum and hence does not suffer from the
high variability of the windowed DFT. Because higher-
order wavelets provide a better approximation to octave-
band filters than does the Haar wavelet, it is easier to
translate higher-order wavelet variances into reasonable
spectral estimates.

Even though wavelets are a relatively new topic,
there is already an enormous literature about them —
see [4] and references therein. In what follows, we merely
attempt to motivate the use of wavelet analysis for syn-
chronization and timekeeping, with particular emphasis
on the problem of leakage. Space precludes a full discus-
sion of many important aspects of wavelet, analysis (such
as the existence of fast computational algorithms [9],
procedures for determining confidence intervals for the
wavelet variance [8], and the use of the scalogram as a
diagnostic tool for monitoring oscillator stability in real
time [7]).

II. Power-Law Noise Processes

It has often been claimed that, of all the physical
measures, we can realize frequency or periodicity with
the greatest accuracy. What we mean is that some ba-
sic periodic (repeating) event is very consistent in its
recurrence so that, for example, it is independent of en-
vironmental influence. This event can thus be used to
define consistent and repeatable intervals of time such as
the second. Departures from this consistent recurrence
are classed as noise. Perfectly recurrent noiseless events

mean that events happen now exactly as happened be-
fore, that is, an observation now (the present moment)
can be perfectly predicted based upon what has hap-
pened before (a past moment). Since reproduction is
never quite exact, the degree with which present recur-
rence duplicates past recurrence indicates how well the
events remember or duplicate themselves.

When the phase or time difference between two os-
cillators or clocks is measured as a function of the nom-
inal time of the clocks, what we are measuring is the
relative time deviation of the two clocks. Time devia-
tion is generally modeled by two parts:

[1] a deterministic part quantified by a time offset, fre-
quency offset, and frequency drift, and

[2] a random part quantified by various classes of noise
processes.

Historically, power-law (or long memory) noise processes
have played a vital role in characterizing the performance
of clocks. The statement that the relative phase {z.} be-
tween a test clock and reference obeys a power-law noise
process means that the power spectral density function
Sz (+) for the process modelling {z.} is proportional to f
for positive Fourier frequencies f. Correctly classifying a
clock’s power-law behavior, which is equivalent to deter-
mining «, is a primary objective of analysis techniques
such as spectral analysis. Once the exponent « has been
determined, we derive estimates of how a clock’s time-
keeping ability might evolve [11].

The spectrum of the residual time difference be-
tween two clocks or oscillators sometimes contains peri-
odicities (such as from 50 or 60 Hz AC power) and always
contains nonperiodic (stochastic) characteristics quan-
tified as power-law processes. In timekeeping metrol-
ogy, there are five commonly used models of power-law
noise processes [11]: white PM (S.(f) « f°, a con-
stant), flicker PM (S,(f) o f~1), white FM (S.(f)
f72), flicker FM (5,(f) o f~3), and random walk FM
(Sz(f) o« f*). Examples of time series drawn from
these five processes are shown in Fig. 1.

III. Narrowband vs. Broadband Processing

A common approach to estimating the power spec-
trum S, (-) of phase residuals {z;} uses a digital proces-
sor to compute a windowed discrete Fourier transform
(DFT) of {z,}. Here “windowed DFT” refers to multi-
plying the phase residuals by a data window {h;} (some-
times called a data taper) to produce a windowed series
{h¢z.}, to which we then apply the DFT. The purpose of
windowing is to reduce a potential bias known as leakage,
in which power “leaks” from high power into low power
portions of the spectrum, thus causing a significant pos-
itive bias in unwindowed spectral estimates. There is a
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Fig. 1. Examples of time series that are portions of
realizations from power-law processes S;(f) oc f*, with
a =0, -1, -2, =3 and —4 (from top to bottom).

vast literature on the windowed DFT (see [10] for a re-
view). Commercial digital spectrum analyzers typically
compute a power spectral density estimate from a sam-
pled varying voltage by converting the voltage to a time
series {z;}, windowing the series using a user-selected
window {h}, and then taking the squared modulus of
a properly normalized version of the DFT of {h.z:}.
The windowed DFT is inherently narrowband and hence
highly variable across frequencies, which makes straight-
forward interpretation of DFT-based spectral estimates
somewhat problematic for the novice (these estimates
can also be highly dependent on the choice of a particu-
lar window — see [12] for a discussion of this dependence
in the case of power-law processes).

Because narrowband processing is not required for
broadband processes such as power-law processes, time
and frequency standards laboratories have alternatively
handled power-law noise processes using the Allan vari-
ance (1] or in some cases a modified version of it [2].
These variances can be interpreted as the variance of a
process after it has been subjected to an approximate
bandpass filter of constant Q (the ratio of the center fre-
quency of the analyzing filter to the width of the filter’s
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pass band is constant [3]). The Allan variance can be
used to construct a broadband spectral estimate using
well-known conversion schemes [11], [6]. However, while
broadband processing produces spectral estimates with
inherently less variability than those of narrowband pro-
cessing, both types of processing are subject to a bias
known as leakage. Leakage has long been recognized
as an important concern for narrowband spectral esti-
mates (and in fact is the rationale for using windows),
but its importance in broadband processing has not re-
ceived much attention. As we argue below, one rationale
for considering the wavelet variance is that higher-order
wavelets effectively address the leakage problem.

IV. Wavelets and the “Scale Domain”

Suppose that zo, 1, ..., zx_; form a sequence {z,}
of N time-ordered phase measurements. Let us define

N~

—

ICCng = gz

t

to be the “energy” in our finite set of measurements.
We can then trivially regard |z;|? as the contribution to
the energy £, due to the component of {z;} with time
index t. We can also regard {z;} as the “time domain”
representation of our phase measurements.

Next, consider the discrete Fourier transform (DFT)
of {z;}, namely,

1 N-1
Xp=— Lye T it k=0,1,..., N -1,
N 2

where X is the kth DFT coefficient and is associated
with the kth Fourier frequency fx = k/N. Parseval’s
theorem tells us that

N—-1

ST IXef =&

k=0

Hence we can regard |X,|? as the contribution to the
energy &; due to the component of { X} with frequency
index k, and we can regard {X;} as the “frequency do-
main” representation of our phase measurements. The
time and frequency domain representations are equiva-
lent in the sense that we can recover one given the other
because of the inverse DFT, namely,

N-1
1 127 fict
To= e 3 Xpe? R p—0,1,. . N-1.
\/N k=0

As is true for the DFT, the discrete wavelet trans-
form (DWT) of {z,} preserves the energy &, in a set of



coefficients; however, unlike the DFT, these coefficients
are not indexed by frequency, but rather doubly indexed
by time shift j and “scale” 7. The DWT is defined in
terms of a “mother wavelet” +(-) and an associated “scal-
ing function” ¢(-), where ¥(-) can be any member of a
large class of functions satisfying certain stringent con-
ditions [4]. Assuming for convenience that N = 2P for
some positive integer p, we define ¥; () as a shifted and
scaled version of ¥(-):
(7).

where 7 = 1, 2, 4, ..., N/2 indexes a “power of 2” scale,
while j = 0, 27, 47, ..., N — 27 indexes shifts in time
commensurate with scale 7. The DWT coefficients are
the doubly indexed series {d; .} defined by

1

t
Yj,r(t) = W;ﬁ

27

djr= Zmp,-,,(t)
t

along with ¢ = 3 z:¢(t/N)/y/N (depending upon the
precise implementation of the DWT, ¢ is typically pro-
portional to either the average . x:/N of the sequence
{z;} or a quantity that converges to the average as N
gets large). Parseval’s theorem tells us that

S Sy e = £
T

Hence we can regard |d; -|? as the contribution to the en-
ergy &, due to the component of {d;,} with time shift
index j and scale index 7, and we can regard {d;,} as
the “scale domain” (or “time/scale” domain) represen-
tation of our phase measurements. This scale domain
representation is fully equivalent to the time and fre-
quency domain representations because of the inverse
DWT, namely,

Ty =c+ Z Zd',fd)j,f(t)‘
T 3

As an example of a scale domain representation, let
us set our mother wavelet (-) equal to the Haar wavelet
a0 () which we define here as

-1, 0<t<1/2
¢(Hna!)(t) — 1, 1/2 <t< 1;
0, otherwise.

The corresponding scaling function ¢(-) is given by

¢(an) (t) = |1/)(Hnr) (t)l
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(this simple relationship between the mother wavelet and
the scaling function is unique to the Haar wavelet). For
the Haar wavelet, we find that

-1 -1
T(2j+2)r—1-1 — E T(2j+1)r—1-1
0 1=0

=

1
G = T5r

T = =
= % [fl'(2j+2)r—1(7') - $(2j+1)r—1(7')] ,
where T (1) = E;;(} zy—j/7. Thus, at scale 7 = 1, we
have d;1 = (z9j41 — z2;)/v/2 for 0 < j < N/2 -1,
while, at the largest scale 7 = N/2, we have the single
coefficient

donj2 = (EN-1++Tnj2 —Tnja-1— = x0)/(V2)F.

Let us now define the wavelet variance for scale 7

oz

(1) = var {d;,}/.
Under the assumption that E{d;} = 0 so that the vari-
ance of d; ; is equal to E{d3 '}, an obvious estimator of

this wavelet variance is

1 1 N/f2r—1 2 N/27-1
=2 — 2 _ 2
52T = X F75r Jz::o dr=% ; ..

Specializing now to the case of the Haar wavelet, we find
that
N/2r—1

T — —
N Z [Zirnr-1(1) = Zjsnyr—1(7)]
j=0

2

If the x,’s represented average fractional frequency devi-
ations rather than phase measurements, then the above
would be the well-known “nonoverlapped” estimator of
the Allan variance. The Allan variance therefore corre-
sponds to a wavelet variance when the Haar wavelet is
used with average fractional frequency deviations. When
viewed from the perspective of wavelets, the Allan vari-
ance is thus not a “time domain” quantity, but rather is
a “scale domain” or “time/scale domain” quantity.

V. Determination of Power-Law Noise Types

As a function of time, two-oscillator phase devia-
tions might look like one of the plots of a realization of
a pure power-law process shown in Fig. 1. More realisti-
cally, these deviations resemble a linear combination of
such processes, whose spectrum can be described math-
ematically as

Se(f) =Y halfI°,
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Fig. 2. Modulus squared of the transfer function for the
Allan variance (left-hand column) and the modified Al-
lan variance (right-hand column) times power-law spec-
tra S;(-) proportional to f° (top row), f~! (second row),
f~% (third row), f~3 (fourth row) and f~* (bottom row)
for scale 7 = 4. The integrals of the shaded areas yield
the Allan variance or modified Allan variance for scale
T=4.

where the summation is over a finite number of differ-
ent a’s (usually a subset of & = 0, —1, —2, —3 and
~4), with h, determining the relative contribution of the
power-law process with exponent c.. We refer to a pro-

Fig. 3. Modulus squared of the transfer function for
the D4 wavelet variance (left-hand column) and the D,
wavelet variance (right-hand column) times the same set
of power-law spectra shown in Fig. 2. The integrals of
the shaded areas yield the D4 or Dy wavelet variance
for scale 7 = 4.

cess with the above spectrum as a composite power-law
process. For pure power-law processes, there are well-
known formulae for converting from the Allan variance
to the frequency domain {11]. Here we argue that, for
composite power-law processes, this conversion can be-
come problematic for both the usual Allan variance and



the modified Allan variance. Let 02(7) represent either
of these variances (this notation should not be confused
with similar notation for “TVAR” in [3]). We can then

write
1/2

oi(r)= | Fe(£)S:(f)df,
-1/2

where F.(-) is the modulus squared of the appropriate
transfer function for the filters associated with these vari-
ances at scale 7 [5]. The shaded areas in the plots of
Fig. 2 show the product F(f)Sz(f) versus f for the
Allan variance (left-hand column) and the modified Al-
lan variance (right-hand column) for five pure power-law
spectra and scale 7 = 4 (the power-law spectrum is con-
stant in the top row of plots, so this row really shows just
F-(f) versus f). The integral of each shaded area gives
a2(4) for the appropriate pure power-law process. In
the octave-band interpretation of these variances, either
variance at scale 7 should roughly reflect the power in
the spectrum in the frequency interval [1/47,1/27]. For
T = 4, this interval is [1/16,1/8] and is delineated on
each plot by a pair of thin vertical lines. If the filters as-
sociated with these variances were perfect octave-band
filters, the shaded area in each plot would be entirely
contained between the vertical lines. The amount of the
shaded area that lies outside of the vertical lines rep-
resents the contribution to the Allan or modified Allan
variance attributable to leakage. These plots indicate
that there is substantial leakage for the Allan variance,
but less so for the modified Allan variance. Leakage is
most pronounced in the Allan variance for white PM
(Sz(f) o f° in the top left-hand plot), a deficiency
that in fact accounts for the development of the mod-
ified Allan variance [5]. If we now consider a composite
power-law process dominated between the vertical lines
by a power-law with a different exponent than the one
displayed in the plots of Fig. 2, we can see the poten-
tial problem with leakage, namely, that the integral of
F+(f)Sz(f) (the Allan or modified Allan variance) can
be influenced mainly by values of f outside of the verti-
cal lines and hence cannot accurately reflect the values
of S;(f) between the vertical lines.

Fig. 3 shows corresponding plots for the wavelet
variance using the Dy (left-hand column) and D¢ (right-
hand column) “extremal phase” wavelets [4]. The Dy
wavelet was chosen because it is “one order up” from
the Haar wavelet (and in fact rather closely mimics the
behavior of the modified Allan variance), while the Do
wavelet is an example of a higher-order wavelet. The
main point to notice here is that the D;q wavelet vari-
ance for scale 7 = 4 reflects the spectrum in the passband
[1/16,1/8] to a much better degree than the other vari-
ances because the shaded areas are concentrated between
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Fig. 4. NIST-7 vs. hydrogen maser phase measurements
(top plot) and estimated o, (7) versus 7 (bottom plot) for
the Allan variance (connected curve) and the D4 wavelet
variance (crosses).

the vertical lines to a higher degree for the Do wavelet
variance than for the Allan or modified Allan variances.

VI. Examples

We present two examples of the limited tests we
have made to date using the wavelet variance with phase
measurements (see [9] for an example involving geophys-
ical data, for which the Dg wavelet variance performed
considerably better than the Allan variance). The top
plot of Fig. 4 shows phase measurements recorded every
100 seconds over a 3.7 day interval comparing NIST-7
to a hydrogen maser. The bottom plot shows the esti-
mated Allan standard deviation (which is just the square
root of the Allan variance) versus scale 7 (the connected
curve) and also the estimated D, wavelet standard de-
viation versus 7 (the crosses). The center of each cross
indicates the appropriate Dy estimate, whereas the verti-
cal portion of the cross delineates a “one sigma” (68.3%)
confidence interval for the true D4 wavelet standard de-
viation [8]. The Allan and D, wavelet standard devia-
tions agree fairly well here, although there are two scales
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Fig. 5. Time-synchronization phase measurements us-
ing the NIST satellite two-way transfer modem config-
ured in an in-cabinet loop test (top plot) and estimated
o.(7) versus 7 (bottom plot) for the Allan variance (con-
nected curve) and the Dy wavelet variance (crosses).

(7 = 3200 and 6400 seconds) for which the Allan stan-
dard deviation is just inside the “one sigma” confidence
limits for the D4 wavelet standard deviation. Use of
the D; wavelet here tells us that leakage is not a ma-
jor problem with the Allan variance for this set of phase
measurements.

The top plot of Fig. 5 shows phase measurements
recorded every 40 seconds over a half day interval reflect-
ing time-synchronization using the NIST satellite two-
way transfer modem configured in an in-cabinet loop
test. The bottom plot here shows the same quantities
as in the bottom plot of Fig. 4. While the Allan and
Dy standard deviations agree quite well in the smallest
three and largest scales shown, there is significant differ-
ence in the middle three scales; moreover, the difference
is consistent with an interpretation of leakage in the Al-
lan variance (because the Allan variance is higher than
the Dy variance). Use of the higher-order Dg wavelet
yields good agreement with the D, wavelet.
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